

COMP 431 - Problem Set 2

Joe Puccio

February 5, 2015

Collaborators: Max Daum, Fred Landis.

1.

a) $\frac{(8(F+h))}{R} \times N$, seconds

b) $\frac{(8M(P+h))}{R} + \frac{8(N-1)(P+h)}{R}$, seconds

c) $T_s + \frac{(8M(P+\frac{h}{2}))}{R} + \frac{8(N-1)(P+\frac{h}{2})}{R}$, seconds

d) $T_s + \frac{(8(F+\frac{h}{2}))}{R}$, seconds

e) Packet switching is faster than pure circuit switching when $\frac{8Mh}{R} + \frac{8(N-1)(P+h)}{R} < \frac{4h}{R} + T_s$.

2.

a) $1.5 \text{ Mbps} \times .02 \text{ seconds} = .03 \text{ Mb}$ or 30kb of data on the wire at any given instant.

b) Because 450,000 bits exceeds 30kb, we know that the most that will ever be on the wire at a given time is 30kb.

c) One knows the maximum amount of data that can be held on the link at any instant of time.

d) $.02 + \frac{.45}{1.5} = .32$ seconds.

e) $50 \times (.02 + (.006) + .02) - .02 = 2.28$ seconds. We subtract off the last .02 because the last frame does not need to be acknowledged.

f) The largest value of m such that an ACK frame for 1 will arrive while m is being transmitted is $m = 8$. The sender will be able to send frame $m + 1 = 9sa$, 0.048 seconds after sending the first frame. The sender will be able to send frame $2m = 16$, .09 seconds after sending the first frame. Because this setting of m results in no wait time, the total time for transmission is again $.02 + \frac{.45}{1.5} = .32$ seconds.

3.

a) $600 \text{ Mbps} \times .02 \text{ seconds} = 12 \text{ Mb}$ of data on the wire at any given instant.

b) Because 450,000 bits is less than 12 Mb, we know that the most that will ever be on the wire at a given time is all 450,000 bits.

d) $.02 + \frac{.45}{600} = .02075$ seconds.

e) $50 \times (.02 + (.000015) + .02) - .02 = 1.98075$ seconds. We subtract off the last $.02$ because the last frame does not need to be acknowledged.

f) The largest value of m such that an ACK frame for 1 will arrive while m is being transmitted is $m = 2668$. The sender will be able to send frame $m + 1 = 2669$, 0.04002 seconds after sending the first frame. The sender will be able to send frame $2m = 5336$, 0.080025 seconds after sending the first frame. Because this setting of m results in no wait time, the total time for transmission is again $.02 + \frac{.45}{600} = .02075$ seconds.

4.

a) The ping is the distance between the nodes divided by the speed of transmission, so $\frac{3.6 \times 10^7}{2.4 \times 10^8} = 0.15$ seconds, and each image is 37 megabits, and our link has a rate of 10 megabits per second, so we found a given image to be sent and acknowledged takes $\frac{37}{10} + 2 \times (0.15) = 4$ seconds, which means we can send 15 images per minute.

b) We want to find a value for the size of the file (in megabits), call it x , such that it can be transmitted and acknowledged in exactly 1 second (as exactly 1 second will lead to the largest value for the size of the file), so we have

$$\frac{x}{10} + 2 \times (0.15) = 1 \Rightarrow x = 7$$

So we have it that the maximum file size possible is 7 megabits.

c) We must solve this equation again but instead where our transmission speed is 100, so

$$\frac{x}{100} + 2 \times (0.15) = 1 \Rightarrow x = 70$$

So our maximum file size is 70 megabits.

5.

a) The intensity for a given link is simply the average number of bits being transmitted on the link over the transmission capacity of the link, so we know that $I = (10,000 \times 90,000)/10^9 = .9$, which means on average the number of packets in queue when a new packet arrives is $q = .9/(1 - .9) = 9$. So the amount of delay that this packet is subject to is $(9 \times 10,000)/10^9 = .00009$ seconds.

b) This is simply our queuing delay $.00009$ plus the transmission delay of the frame $.00001$, so the total delay is $.0001$ seconds.

c) Our new average number of packets in the queue when a new packet arrives is $q = .09/(1 - .09) = 0.098$, which means that in fact this new packet is arriving just as the previous packet is about to finish sending. So the queuing delay is very small, $.0000000989$, and the transmission delay is $.000001$, so our total delay is $.0000010989$.